Wavelet Scattering Regression of Quantum Chemical Energies

نویسندگان

  • Matthew Hirn
  • Stéphane Mallat
  • Nicolas Poilvert
چکیده

We introduce multiscale invariant dictionaries to estimate quantum chemical energies of organic molecules, from training databases. Molecular energies are invariant to isometric atomic displacements, and are Lipschitz continuous to molecular deformations. Similarly to density functional theory (DFT), the molecule is represented by an electronic density function. A multiscale invariant dictionary is calculated with wavelet scattering invariants. It cascades a first wavelet transform which separates scales, with a second wavelet transform which computes interactions across scales. Sparse scattering regressions give state of the art results over two databases of organic planar molecules. On these databases, the regression error is of the order of the error produced by DFT codes, but at a fraction of the computational cost.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantum Energy Regression using Scattering Transforms

We present a novel approach to the regression of quantum mechanical energies based on a scattering transform of an intermediate electron density representation. A scattering transform is a deep convolution network computed with a cascade of multiscale wavelet transforms. It possesses appropriate invariant and stability properties for quantum energy regression. This new framework removes fundame...

متن کامل

Solid Harmonic Wavelet Scattering: Predicting Quantum Molecular Energy from Invariant Descriptors of 3D Electronic Densities

We introduce a solid harmonic wavelet scattering representation, invariant to rigid motion and stable to deformations, for regression and classification of 2D and 3D signals. Solid harmonic wavelets are computed by multiplying solid harmonic functions with Gaussian windows dilated at different scales. Invariant scattering coefficients are obtained by cascading such wavelet transforms with the c...

متن کامل

Solid Harmonic Wavelet Scattering for Molecular Energy Regression

We introduce a solid harmonic wavelet scattering representation, which is invariant to rigid movements and stable to deformations, for regression and classification of 2D and 3D images. Solid harmonic wavelets are computed by multiplying solid harmonic functions with Gaussian windows dilated to different scales. Invariant scattering coefficients are obtained by cascading such wavelet transforms...

متن کامل

Mixed quantum/classical calculations of total and differential elastic and rotationally inelastic scattering cross sections for light and heavy reduced masses in a broad range of collision energies.

The mixed quantum/classical theory (MQCT) for rotationally inelastic scattering developed recently [A. Semenov and D. Babikov, J. Chem. Phys. 139, 174108 (2013)] is benchmarked against the full quantum calculations for two molecular systems: He + H2 and Na + N2. This allows testing new method in the cases of light and reasonably heavy reduced masses, for small and large rotational quanta, in a ...

متن کامل

Exciton scattering approach for branched conjugated molecules and complexes. II. Extraction of the exciton scattering parameters from quantum-chemical calculations.

We obtain the parameters of the exciton scattering (ES) model from the quantum-chemical calculations of the electronic excitations in simple phenylacetylene-based molecules. We determine the exciton dispersion and the frequency-dependent scattering matrices which describe scattering properties of the molecular ends as well as of meta- and orthoconjugated links. The extracted functions are smoot...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Multiscale Modeling & Simulation

دوره 15  شماره 

صفحات  -

تاریخ انتشار 2017